Problem 1. With $|V| = 100$ V, the instantaneous power $p(t)$ into a network N has a maximum value 1707 W and a minimum value of -293 W.

1. Find a possible series RL circuit equivalent to N.

Define $v(t)$ and $i(t)$ of the network N as

$$v(t) = \sqrt{2}V \cos(\omega t + \theta_V),$$

$$i(t) = \sqrt{2}I \cos(\omega t + \theta_I).$$

Then, the instantaneous power into N is

$$p(t) = v(t)i(t) = 2VI \cos(\omega t + \theta_V) \cos(\omega t + \theta_I) = VI \left[\cos(\theta_V - \theta_I) + \cos(2\omega t + \theta_V + \theta_I) \right].$$

The maximum value of $p(t)$ occurs when $\cos(2\omega t + \theta_V + \theta_I) = 1$ and, similarly, the minimum value of $p(t)$ occurs when $\cos(2\omega t + \theta_V + \theta_I) = -1$. So we have the following 2 equations:

$$P_{\text{max}} = VI \cos(\theta_V - \theta_I) + VI = 1707 \text{ W}$$

$$P_{\text{min}} = VI \cos(\theta_V - \theta_I) - VI = -293 \text{ W}$$

Subtracting one from the other, we get

$$2VI = 1707 + 293 \implies VI = 1000 \text{ W} \implies I = 10 \text{ A},$$

and adding the two and substituting $VI = 1000$ in, we get

$$2VI \cos(\theta_V - \theta_I) = 2000 \cos(\theta_V - \theta_I) = 1414 \implies \theta_V - \theta_I = \cos^{-1}\left(\frac{1414}{2000}\right) = \pm45^\circ.$$

An inductive load causes current to lag the voltage, so we get $\theta_V - \theta_I = 45^\circ$. Now we use $V = 100\angle\theta_V$ and $I = 10\angle\theta_I$ to get

$$Z = \frac{V}{I} = \frac{100\angle\theta_V}{10\angle\theta_I} = 10\angle(\theta_V - \theta_I) = 10\angle45^\circ \Omega.$$

Finally we obtain $R = \Re(Z) = 7.07 \Omega$ and $\omega L = \Im(Z) = 7.07 \Omega \implies L = 0.0188 \text{ H}$.
2. Find \(S = P + jQ \) into \(N \).

Using the voltage and current phasors from above, we get

\[
S = VI^* = (100\angle\theta_V)(10\angle\theta_I)^* = (100\angle\theta_V)(10\angle(-\theta_I)) = 1000\angle(\theta_V - \theta_I) = 1000\angle45^\circ.
\]

So \(S = P + jQ \), where \(P = \Re(S) = 707 \text{ W} \) and \(Q = \Im(S) = 707 \text{ Var} \).

3. Find the maximum instantaneous power into \(L \) and compare with \(Q \).

The instantaneous power into \(L \) is

\[
p_L(t) = v_L(t)i(t) = L\frac{di}{dt}i(t) = -L\sqrt{2}\omega I\sin(\omega t + \theta_I)\sqrt{2}I\cos(\omega t + \theta_I)
= 2\omega LI^2\sin(\omega t + \theta_I)\cos(\omega t + \theta_I)
= \omega LI^2 \sin(2\omega t + 2\theta_I).
\]

The maximum value of \(p_L(t) \) occurs when \(\sin(2\omega t + 2\theta_I) = 1 \), and at this point,

\[
p_{L,max} = \omega LI^2 = 2\pi60(0.0188)(10^2) = 707 \text{ W},
\]

which is equal to \(Q \).

Problem 2. A certain \(1\phi \) load draws 5 MW at 0.7 power factor lagging. Determine the reactive power required from a parallel capacitor to bring the power factor of the parallel combination up to 0.9.

With the current power factor of 0.7 lagging, we solve the following for the current \(Q \):

\[
\tan(\cos^{-1}(0.7)) = \frac{Q_{\text{cur}}}{P} = \frac{Q_{\text{cur}}}{5} \implies Q_{\text{cur}} = 5.101 \text{ MVar}
\]

To reach a power factor of 0.9 lagging, we solve the following for the desired \(Q \):

\[
\tan(\cos^{-1}(0.9)) = \frac{Q_{\text{des}}}{P} = \frac{Q_{\text{des}}}{5} \implies Q_{\text{des}} = 2.422 \text{ MVar}
\]

Therefore, the reactive power required from a parallel capacitor to bring the power factor to 0.9 is

\[
Q_{\text{cap}} = Q_{\text{cur}} - Q_{\text{des}} = 5.101 - 2.422 = 2.679 \text{ MVar}
\]

Problem 3. A \(3\phi \) load draws 200 kW at a PF of 0.707 lagging from a 440-V line. In parallel is a \(3\phi \) capacitor bank that supplies 50 kVAR. Find the resultant power factor and current (magnitude) into the parallel combination.

In each phase, the load draws 200/3 kW at a PF of 0.707 lagging. So we solve for the reactive power that the load draws in each phase as follows:

\[
\tan(\cos^{-1}(0.707)) = \frac{Q_{\text{load},1\phi}}{P_{\text{load},1\phi}} = \frac{Q_{\text{load},1\phi}}{200/3} \implies Q_{\text{load},1\phi} = 66.69 \text{ kVar}.
\]

With the capacitor bank in parallel, the combined reactive power drawn becomes

\[
Q_{\text{combo},1\phi} = Q_{\text{load},1\phi} - Q_{\text{cap},1\phi} = 66.69 - 50/3 = 50.02 \text{ kVar}.
\]
So the power factor of the combination is

\[\cos \left(\tan^{-1} \left(\frac{50.02}{200/3} \right) \right) = 0.7999 \approx 0.8 \text{ lagging} \]

The current magnitude into the combination is

\[|I_{combo,1\phi}| = \frac{|S_{combo,1\phi}|}{|V|} = \frac{\sqrt{P_{combo,1\phi}^2 + Q_{combo,1\phi}^2}}{|V|} = \frac{\sqrt{(200/3)^2 + 50.02^2}}{440} = 189 \text{ A, per phase} \]

Problem 4. A 1\(\phi \) load draws 10 k\(W \) from a 416-V line at a power factor of 0.9 lagging.

1. Find \(S = P + jQ \).

At power factor 0.9 lagging, the complex power drawn is solved as

\[\tan(\cos^{-1}(0.9)) = \frac{Q}{P} = \frac{Q}{10} \implies Q = 4.84 \text{ kVar.} \]

Then, \(S = 10 + j4.84 \text{ kVA.} \)

2. Find \(|I| \).

\[|I| = \frac{|S|}{|V|} = \frac{\sqrt{10^2 + 4.84^2} \times 1000}{440} = 26.7 \text{ A} \]

3. Assume that \(\angle I = 0 \) and find the instantaneous power \(p(t) \).

\[
p(t) = v(t)i(t) = \sqrt{2}V \cos(\omega t + \theta_V)\sqrt{2}I \cos(\omega t) = 2VI \cos(\omega t + \theta_V) \cos(\omega t) = VI \cos \theta_V + VI \cos(2\omega t + \theta_V) = P + VI [\cos(2\omega t) \cos \theta_V - \sin(2\omega t) \sin \theta_V] = P + 2V \cos \theta_V \cos(2\omega t) - P \sin(2\omega t) = P(1 + \cos(2\omega t)) - Q \sin(2\omega t) = 10(1 + \cos(2\omega t)) - 4.84 \sin(2\omega t) \text{ kW} \]

Problem 5. A small manufacturing plant is located 2km down a transmission line, which has a series reactance of 0.5 \(\Omega /\text{km} \). The line resistance is negligible. The line voltage plant is 480\(\angle 0 \) V (rms), and the plant consumes 120 k\(W \) at 0.85 power factor lagging. Determine the voltage and power factor at the sending end of the transmission line by using:

1. A complex power approach.

The load draws 120 kW at 0.85 power factor lagging. We solve for the reactive power drawn by the load as

\[\tan(\cos^{-1}(0.85)) = \frac{Q_{load}}{P_{load}} = \frac{Q_{load}}{120} \implies Q_{load} = 74.37 \text{ kVar.} \]

Therefore, the complex power drawn by the load is \(S_{load} = 120 + j74.37 \text{ kVA.} \) We can now solve for the current into the load as

\[
I = \left(\frac{S_{load}}{V_{load}} \right)^* = \left(\frac{120 + j74.37}{480\angle0^\circ} \right)^* = 294.1\angle(-31.79^\circ) \text{ A.} \]
The loss in the line can be computed as

\[S_{\text{line}} = V_{\text{line}}I_{\text{line}}^* = Z_{\text{line}}I_{\text{load}} I^* = j2(0.5)(0.5)^2 = j86.51 \text{ kVA}. \]

Thus, the complex power supplied by the source is

\[S_{\text{source}} = S_{\text{load}} + S_{\text{line}} = 120 + j74.37 + j86.51 = 120 + j160.88 \text{ kVA} = 200.7\angle53.28^\circ \text{ kVA}. \]

So the power factor at the sending end is \(\cos(53.28^\circ) = 0.598 \), lagging.

Finally, the voltage at the sending end is

\[V_{\text{source}} = \frac{S_{\text{source}}}{I^*} = \frac{200.7\angle53.28^\circ}{294.1\angle31.79^\circ} = 682.4\angle21.5^\circ \text{ V}. \]

2. A circuit analysis approach.

Using KVL, we have

\[V_{\text{source}} = Z_{\text{line}}I + V_{\text{load}} = j1(294.1\angle(-31.79^\circ)) + 480 = 682.4\angle21.5^\circ \text{ V}. \]

And the power factor is \(\cos(\theta_V - \theta_I) = \cos(21.5^\circ + 31.79^\circ) = 0.598 \), lagging.